
Roboflow100-VL: A Multi-Domain Object Detection
Benchmark for Vision-Language Models

Peter Robicheaux1,∗, Matvei Popov1,∗, Anish Madan2, Isaac Robinson1,
Joseph Nelson1, Deva Ramanan2, Neehar Peri2

1 Roboflow, 2Carnegie Mellon University

Abstract

Vision-language models (VLMs) trained on internet-scale data achieve remark-
able zero-shot detection performance on common objects like car, truck, and
pedestrian. However, state-of-the-art models still struggle to generalize to out-
of-distribution tasks (e.g. material property estimation, defect detection, and con-
textual action recognition) and imaging modalities (e.g. X-rays, thermal-spectrum
data, and aerial images) not typically found in their pre-training. Rather than
simply re-training VLMs on more visual data (the dominant paradigm for few-shot
learning), we argue that one should align VLMs to new concepts with annotation
instructions containing a few visual examples and rich textual descriptions. To
this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-
modal datasets with diverse concepts not commonly found in VLM pre-training.
Notably, state-of-the-art models like GroundingDINO and Qwen2.5-VL achieve
less than 2% zero-shot accuracy on challenging medical imaging datasets within
Roboflow100-VL, demonstrating the need for few-shot concept alignment. Our
code and dataset are available on GitHub and Roboflow.

1 Introduction

Vision-language models (VLMs) trained on web-scale datasets achieve remarkable zero-shot per-
formance on many popular academic benchmarks [54, 27, 45]. However, the performance of such
foundation models varies greatly when evaluated in-the-wild, particularly on out-of-distribution
tasks (e.g. material property estimation, defect detection, and contextual action recognition) and
imaging modalities (e.g. X-rays, thermal spectrum data, and aerial imagery). In this paper, we
introduce Roboflow100-VL, a large-scale multi-domain dataset to benchmark state-of-the-art VLMs
on hundreds of diverse concepts not typically found in internet pre-training.

Status Quo. Foundation models are often trained on large-scale datasets curated from diverse sources
around the web. However, despite their scale and diversity, these pre-training datasets still follow a
long-tail distribution [41], causing foundation models to generalize poorly to rare concepts [36]. A
common approach for improving the performance of VLMs is to scale up training data and model
size [1]. However, we argue that some data will always remain out-of-distribution, whether due to
being sequestered from the internet or being created after the model’s training cutoff [47], motivating
the need to learn new concepts from a few examples.

Evaluating Out-of-Distribution Generalization. Existing benchmarks primarily assess VLM
performance through multi-modal visual question answering (VQA) and common sense reasoning
[27, 55, 45]. However, we argue that evaluating model performance on compositional reasoning
benchmarks alone does not effectively measure generalization to out-of-distribution tasks. To address
this limitation, we introduce Roboflow100-VL, a large-scale detection benchmark comprised of 100
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Figure 1: Roboflow100-VL Dataset. We identify a set of 100 challenging datasets from Roboflow
Universe that contain concepts not typically found in internet-scale pre-training. To simplify analysis,
we cluster these 100 datasets using per-dataset CLIP [38] embeddings into seven categories. We
visualize examples from each of these categories above. Furthermore, we also generate multi-modal
instructions for each dataset with a few visual examples and rich textual descriptions per class to
facilitate few-shot concept alignment.

multi-modal datasets from diverse domains (Fig. 1). Importantly, we carefully curate Roboflow100-
VL such that it cannot be solved by simply prompting state-of-the-art models with class names.
Specifically, we include datasets where classes are labeled using scientific names (e.g. liver fibrosis
and steatosis), acronyms (e.g. DIP and MCP), context-dependent names (e.g. detecting a block
vs. set in the context of volleyball), material properties (e.g. metal vs. hard plastic), and
diverse imaging modalities (Fig. 2). We posit that models must leverage multi-modal contextual
information (presented in the form of multi-modal annotator instructions) to align to target concepts
in Roboflow100-VL.

Multi-Modal Annotator Instructions. Annotating large-scale datasets is an iterative process that
often requires extensive discussions between data curators and annotators to clarify class definitions
and ensure label consistency. These (often multi-modal) labeling instructions provide rich contextual
information not provided by class names alone. We argue that aligning foundation models to target
concepts can be principally addressed through the lens of few-shot learning by presenting vision-
language models with visual examples and rich textual descriptions per class. Importantly, this
approach mirrors how we align human annotators to concepts of interest with few-shot multi-modal
examples [3, 30].

Contributions. We present three major contributions. First, we introduce Roboflow100-VL, a large-
scale, multi-domain benchmark designed to evaluate vision-language models (VLMs) on challenging
real-world use cases. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot,
semi-supervised, and fully-supervised settings. Our extensive experiments highlight the difficulty
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Figure 2: Hard Examples in Roboflow100-VL. Our dataset is particularly challenging because it
is difficult to detect objects in Roboflow100-VL using class-names alone. Specifically, we select
datasets where classes are labeled using scientific names, acronyms, context-dependent names,
material properties, and diverse imaging modalities. For example, ufba-425-wniel-fsod-izom has
numerical class-names which refer to ISO 3950 [15], a standardized dental ontology. We posit that
models must leverage multi-modal contextual annotations to address such hard examples.

of adapting VLMs to out-of-distribution tasks and reveal the limitations of current state-of-the-art
methods. Lastly, we host a challenge at CVPR 2025 in conjunction with the Workshop on Visual
Perception via Learning in An Open World to encourage broad community involvement in addressing
this challenging problem.

2 Related Works

Vision Language Models are trained using large-scale, weakly supervised image-text pairs sourced
from the web. Although many vision-language models primarily focus on classification [38] or image
understanding, recent methods address spatial understanding with open-vocabulary detectors. Early
approaches adapted VLMs for object detection by classifying specific image regions [11, 12] or
integrating detection components into frozen [20] or fine-tuned [33, 32, 9] encoders. In contrast,
RegionCLIP [58] employs a multi-stage training strategy that involves generating pseudo-labels from
captioning data, performing region-text contrastive pre-training, and fine-tuning on detection tasks.
GLIP [23] treats detection as a phrase grounding problem by using a single text query for the entire
image. Detic [59] improves long-tail detection performance by utilizing image-level supervision
from ImageNet [40]. Notably, recent VLMs achieve remarkable zero-shot performance and are
widely used as “black box” models in diverse downstream applications [29, 37, 19, 34]. Multi-modal
large language models (MLLMs) such as Qwen2.5-VL [2] and Gemini Flash 2.0 [8] frame spatial
understanding as a text generation task. Interestingly, such MLLMs perform worse at object detection
than task-specific models like GroundingDINO [26].

Fine-Tuning Vision-Language Models is crucial for adapting foundation models to downstream
tasks [14, 56, 10]. Traditional fine-tuning methods, such as linear probing [6, 13] and full fine-
tuning [49, 50] can be computationally expensive. Instead, parameter-efficient approaches like
CLIP-Adapter [10] and Tip-Adapter [57] optimize lightweight MLPs while keeping encoders frozen.
Although prior few-shot learners commonly used meta-learning [52], more recent approaches show
that transfer learning generalizes better to novel categories [48]. In particular, [30, 35] demonstrate
that transfer learning can be effectively used to fine-tune foundation models using a few multi-modal
examples. More recently, in-context learning [51] demonstrates promising results for test-time few-
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Figure 3: Dataset Curation. We begin by sorting all object detection datasets on Roboflow Universe
by stars as a proxy for quality and usefulness to the community. Next, we manually filter all
datasets with common classes, datasets where images only have a single focal object, or datasets
with watermarks. We generate 10-shot splits following the protocol defined by Wang et.al. [48],
where we find a subset of images with 10 total instances per class. We use these 10-shot splits to
generate visually grounded “annotator instructions”, which allow VLMs to perform object detection
from language and vision grounding. Finally, human labelers verify that all images within a dataset
follow consistent annotation policies (e.g. bounding-box fit, semantic legibility of class names, and
completeness of annotation instructions).

shot adaptation without gradient-based fine-tuning. We explore such test-time fine-tuning strategies
in the context of multi-modal large language models [8, 2].

Benchmarking Vision-Language Models is of significant interest to the community. State-of-the-art
VLMs are typically evaluated using benchmarks such as MMStar [4], MMMU [55], MME [24],
ScienceQA [28], MMBench [27], MM-Vet [54], Seed-Bench [21], and MMVP [46]. These bench-
marks evaluate a broad set of vision-language tasks, including fine-grained perception, reasoning,
common sense knowledge, and problem solving in various domains. However, existing evaluations
primarily focus on multi-modal understanding in the context of Visual Question Answering (VQA).
In contrast, Roboflow100-VL evaluates VLM detection accuracy given a few visual examples and rich
textual descriptions. Prior VLM grounding benchmarks like RefCOCO [53] often focus on referential
grounding of common object categories. Recent efforts like ODinW [22] consider more challenging
scenarios by sourcing real-world data from Roboflow [7]. However, we find that state-of-the-art
methods achieve high zero-shot accuracy on OdinW [2], suggesting that these datasets may not be
well suited for evaluating foundational few-shot object detection [30].

3 Roboflow100-VL Benchmark

As shown in Fig. 1, Roboflow100-VL consists of diverse datasets not typically found in internet-scale
pre-training. We highlight our data curation procedure, and present several baselines to evalute
state-of-the-art models in zero-shot, few-shot, semi-supervised, and fully-supervised settings.

3.1 Creating Roboflow100-VL

We source our datasets from Roboflow Universe, a community-driven platform that hosts diverse
open-source datasets created to solve real-world computer vision tasks. With more than 500, 000
public datasets spanning medical imaging, agriculture, robotics, and manufacturing, we focus on
selecting high-quality datasets not commonly found in internet-scale pre-training (e.g. COCO [25],
Objects365 [42], GoldG [17], CC4M [43]) to better assess VLM generalization to rare concepts.
When selecting candidates for Roboflow100-VL, we prioritized datasets where images contained
multiple objects, ensuring more realistic evaluation beyond classification. In addition, we sought
out datasets with semantically ambiguous class names (e.g. “button” can refer to both clothing and
electronics) to encourage algorithms to leverage multi-modal annotator instructions rather than simply
relying on labels. We manually validate the labeling quality of each dataset to ensure exhaustive
annotations. In cases without exhaustive annotations, we manually re-annotate the dataset to the best
of our ability (Fig 3).

Multi-Modal Annotation Generation. Annotator instructions offer precise class definitions and
visual examples that help clarify annotation policies (e.g. by highlighting typical cases, corner cases,
and negative examples) and improve labeling accuracy. Despite providing significant value during
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Dataset Type # Classes # Images # Anno.
Aerial 29 11,627 186,789
Document 88 21,418 127,129
Flora & Fauna 70 46,718 441,677
Industrial 122 29,758 205,627
Medical 77 16,369 125,433
Sports 36 8,443 58,508
Other 142 29,816 210,328
All 564 164,149 1,355,491

Aerial, 11

Document, 10

Flora & Fauna, 23

Industrial, 22

Medical, 13

Sports, 6

Other, 15

Figure 4: Dataset Statistics. The table on the left provides details on the number of classes, images,
and annotations across different dataset types. The figure on the right illustrates the distribution of
dataset types by count.

the labeling process, few datasets publicly release these annotator instructions. Recognizing the
importance of these instructions in aligning humans with target concepts of interest, we generate
multi-modal annotator instructions for all 100 datasets within Roboflow100-VL.

We prompt GPT-4o [1] to generate an initial set of annotator instructions, providing in-context
examples based on the nuImages annotator guidelines. Our prompt includes a structured output
template, along with dataset metadata, class names, and few-shot visual examples per class. In
practice, we find that GPT-4o often overlooks the few-shot images and instead relies heavily on class
names to generate class descriptions. Notably, GPT-4o struggles when class names are uninformative
and sometimes produces overly vague instructions that, while correct, lack useful detail. To address
this, we manually verify all generated annotator instructions to mitigate hallucinations and incorporate
additional informative details missed by the model.

Dataset Statistics. Figure 4 (right) presents an overview of the different dataset types within
Roboflow100-VL, detailing the number of classes, images, and annotations per cluster. Roboflow100-
VL contains a total of 564 classes and 164,149 images, with over 1.3 million annotations. The
“Other” category has the highest number of classes (142), followed by “Industrial” (122) and “Flora
& Fauna” (70). Despite having fewer classes, the “Flora & Fauna” category has the highest number
of images (46,718) and annotations (441,677), indicating a higher density of labeled data. Figure 4
(left) provides a visual representation of class distribution, reinforcing the dominance of the “Other”,
“Industrial”, and “Flora & Fauna” categories. In contrast, “Sports” has the fewest classes (36) and
the least representation in Roboflow100-VL. Despite consisting of 100 datasets, Roboflow100-VL
has about half the number of images as COCO [25], making this an approachable benchmark for the
academic community.

3.2 State-of-the-Art Baselines

We train and evaluate all models on each dataset within Roboflow100-VL independently. Importantly,
we do not tune any parameters or modify zero-shot prompts per-dataset.

Zero-Shot Baselines prompt models with expressive descriptions or class names [31] to guide
foundation models toward target concepts. However, the effectiveness of zero-shot prompting
depends on the pre-training data: If the target class name is semantically meaningful and aligns
well with the model’s foundational pre-training, performance is strong; otherwise, the model fails
catastrophically. We benchmark the zero-shot performance of Detic [59], GroundingDINO [26],
MQ-GLIP [51], QwenV2.5-VL [2] and Gemini Flash 2.0 [8].

Few-Shot Baselines. We evaluate two types of few-shot baselines: visual prompting and multi-modal
prompting. Visual prompting uses images of target concepts that are difficult to describe through text
as prompts to help models learn novel concepts in-context. For example, while “hard plastic” is a
broad and ambiguous category that is hard to define textually, providing image examples improves
concept alignment. Typically, visual prompts are tokenized and fed as inputs to a frozen VLM. Here,
we apply MQ-GLIP [51] with image prompting. Multi-modal prompting combines language and
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visual prompts to leverage multi-modal features. Intuitively, using both text and images yields better
alignment than using either modality alone. In the case of “soft plastic”, ambiguous concepts can
be clarified with textual descriptions (e.g., “thin plastic film” and “plastic bag”) alongside visual
examples. Both visual and language prompts are tokenized and separately fed into a frozen VLM. We
evaluate MQ-GLIP [51], and Gemini Flash 2.0 [8] by prompting models with class names, few-shot
images, and annotator instructions.

Semi-Supervised Baselines. We evaluate variants of YOLO [16, 18] and YOLO with STAC [44]
trained on 10% of each dataset in Roboflow100-VL. STAC generates high-confidence pseudo-labels
for localized objects in unlabeled images and updates the model by enforcing consistency through
strong augmentations.

Fully-Supervised Baselines. We benchmark YOLOv8 [16], YOLOv11 [18], and LW-DETR [5] on
all datasets within Roboflow100-VL. YOLOv8, developed by Ultralytics, builds on the YOLOv5
architecture with improvements in model scaling and architectural refinements. YOLOv11 adds more
architecture improvements, validated on COCO. LW-DETR is a lightweight detection transformer
that outperforms YOLO models for real-time object detection. Its architecture consists of a ViT
encoder, a projector, and a shallow DETR decoder. This baseline serves as an upper bound on
performance, though in rare cases, few-shot foundation models may surpass it when the target dataset
only has a few examples. For all models, we follow the standard established in [7] and train for 100
epochs with batch size 16.

4 Experiments

We conduct extensive experiments to evaluate the performance of state-of-the-art models on
Roboflow100-VL. We present our zero-shot, few-shot, semi-supervised, and fully supervised results
below. See Appendix A for additional implementation details.

Datasets and Metrics. Each dataset is independently evaluated using AP. We report the average
accuracy per super-category to simplify analysis. Roboflow100-VL includes datasets that are out-of-
distribution from typical internet-scale pre-training data, making it particularly challenging (even for
VLMs). To construct the few-shot split, we follow the K-shot dataset creation process established by
[48]. To construct the semi-supervised split, we randomly sample 10% of the training set. Importantly,
all methods are evaluated on the same test set.

4.1 Empirical Analysis of Results.

We benchmark state-of-the-art methods and present our results from Table 1 below.

State-of-the-Art Zero-Shot and Few-Shot Models Struggle on Roboflow100-VL. Roboflow100-
VL is a much harder dataset than prior open-vocabulary object detection benchmarks. Specifically,
GroundingDINO achieves 49.2 mAP on ODinW35, but only reaches 15 mAP on Roboflow100-VL.
Similar trends can be seen with Qwen and OWL-ViT2. Furthermore, both zero-shot and few-shot
models perform significantly worse on Roboflow100-VL than on COCO, suggesting that our dataset
curation policies highlight a data bias in VLM pre-training towards common categories.

Open-Vocabulary Object Detectors Outperform MLLMs. We find that open-vocabulary object
detectors like Detic, GroundingDINO, OWL-ViT2, and MQ-GLIP consistently outperform multi-
modal LLMs (MLLMs) like Qwen 2.5 VL, Gemini Flash 2.0, despite MLLMs pre-training on orders
of magnitude more data. This highlights the advantage of task-specific architectures over generalist
models.

Multi-Modal Annotator Instructions Provide Limited Benefit. Somewhat surprisingly, state-
of-the-art MLLMs struggle to benefit from multi-modal annotator instructions. In fact, prompting
with instructions provides inconsistent benefit compared to prompting with class names. Intuitively,
we expect annotator instructions to improve object detection performance by resolving semantic
ambiguity in class names and providing rich contextual information. However, we posit that this per-
formance decline can be attributed to the fact that MLLMs are instruction-tuned for open vocabulary
detection with rigid prompt structures, making it difficult to effectively leverage additional contextual
information.
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Table 1: Roboflow100-VL Benchmarks. We evaluate the zero-shot, few-shot, semi-supervised, and
fully-supervised performance of state-of-the-art methods on the Roboflow100-VL benchmark. We
find that Roboflow100-VL is particularly challenging for zero-shot and few-shot approaches, with
most methods struggling to achieves 10% mAP averaged over all 100 datasets. In contrast, we find
that semi-supervised learners are able to reach nearly 80% of the performance of fully supervised
models using 10% labeled data.

Method Aerial Document Flora & Fauna Industrial Medical Sports Other All
Zero-Shot
Detic [59] 12.2 4.5 17.9 6.0 0.8 7.6 11.2 9.5
GroundingDINO [26] 21.8 7.9 28.2 10.3 2.1 13.0 18.1 15.7
OWL-ViT2 [32] (Class Names Only) 15.7 8.0 18.4 6.8 1.2 10.2 10.5 10.6
MQ-GLIP-Text [51](Class-Names Only) 11.9 9.7 22.6 7.7 1.4 9.2 14.1 12.0
Qwen 2.5 VL (72B) [2] (Class Names Only) 4.4 5.8 9.2 4.5 2.21 8.8 5.7 5.8
Qwen 2.5 VL (72B) [2] (Instructions Only) 4.7 6.2 13.3 5.4 1.2 9.8 8.1 7.3
Gemini Flash 2.0 [8] (Class Names Only) 6.0 2.9 18.1 3.9 1.1 5.0 9.5 7.8
Gemini Flash 2.0 [8] (Instructions Only) 3.0 1.6 9.4 1.9 0.3 2.8 5.5 4.1
Few-Shot (10 shots)
MQ-GLIP-Image [51] (Images Only) 4.4 3.0 13.0 3.8 1.4 7.4 6.8 6.2
MQ-GLIP [51] (Class Names + Images) 11.9 9.2 22.6 7.7 1.4 9.3 14.1 12.0
Gemini Flash 2.0 [8] (Instructions + Images) 2.3 1.15 4.9 4.0 1.10 0.09 2.3 2.9
Semi-Supervised (10% Labels)
YOLOv8n [16] 35.0 35.7 42.0 51.7 29.5 32.0 38.8 40.0
YOLOv8n [16] w/ STAC [44] 39.0 39.8 45.0 53.5 33.2 36.2 44.0 43.5
YOLOv8s [16] 39.4 40.5 42.5 53.5 34.4 40.9 44.0 43.5
YOLOV8s [16] w/ STAC [44] 41.1 42.5 45.5 55.8 36.4 43.5 46.7 45.8
YOLOv8m [16] 39.7 42.7 44.1 54.1 33.7 45.3 46.7 44.8
YOLOv8m [16] w/ STAC [44] 41.6 45.7 46.1 55.6 35.8 47.1 49.2 46.8
Fully-Supervised
YOLOv8n [16] 52.8 57.6 55.5 66.4 51.2 52.3 57.5 57.4
YOLOv11n [18] 52.1 57.4 55.2 66.5 51.8 52.7 57.6 57.3
YOLOv8s [16] 55.4 60.0 56.9 67.5 52.8 55.0 60.0 59.2
YOLOv11s [18] 54.3 60.3 56.8 67.6 51.8 56.0 60.1 59.0
LW-DETRs [5] 52.0 59.4 55.1 68.2 51.4 54.8 57.7 58.0
YOLOv8m [16] 56.5 62.2 57.3 67.4 52.1 57.2 60.8 59.8
YOLOv11m [18] 55.1 61.8 57.1 68.4 51.9 56.4 60.8 59.7
LW-DETRm [5] 51.9 57.8 56.0 66.5 51.2 53.6 57.8 57.5

Semi-Supervised Learners Are Data Efficient. We find that leveraging simple semi-supervised
learning algorithms like STAC [44] significantly improve model performance when learning with
limited labels. In a majority (8 out of 14) of combinations of model size and data domain, using a
semi-supervised method yielded at least as much improvement in mAP as stepping up a model size.
For example, training a YOLOv8n on 10% labeled data with STAC achieves the same performance
as a YOLOv8s trained on 10% labeled data.

Supervised Object Detectors Overfit Training and Architecture Decisions to COCO. Real-time
object detectors are often optimized for COCO, assuming better performance on COCO translates
to real-world improvements. However, real-world datasets (such as those in Roboflow100-VL) are
often much smaller and more diverse than COCO, challenging this assumption. Specifically, although
Roboflow100-VL has half as many images as COCO, it has more than seven times as many classes
(Fig. 4). Interestingly, we find that models that achieved higher performance on COCO did not
necessarily improve real-world performance on Roboflow100-VL – both within and across model
families. For example, YOLOv11 outperforms YOLOv8 on COCO but underperforms across all three
tested sizes (nano, small, medium) on Roboflow100-VL. This suggests that newer YOLO models
may be overfitting to COCO. We find similar trends with LW-DETR. Lastly, we find that increasing
model size leads to smaller performance improvements on Roboflow100-VL compared to COCO.
The performance difference between the smallest and largest models within a model family is within
2.5 mAP, suggesting that simply increasing model capacity may not lead to significant performance
gains on Roboflow100-VL.

4.2 Limitations and Future Work

Reliance on Crowdsourced Annotations. All our datasets are sourced from Roboflow Universe, a
community platform where anyone can upload dataset annotations. Although this allows us to source
diverse datasets, it introduces uncertainty regarding overall annotation quality. While we manually
inspect all datasets to ensure quality to the best of our ability, verifying annotations in specialized
domains like medical imaging remains a significant challenge.
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Generated Annotator Instructions May Not Reflect Real Instructions. Our annotator instructions
are automatically generated by GPT-4o and are manually verified for correctness. However, they
may not fully reflect the nuances of real-world instructions typically developed alongside dataset
collection. We encourage the community to release real annotator instructions generated through
iterative discussions between annotators and stakeholders. Furthermore, although our annotator
instructions provide high-level class descriptions, they often do not directly incorporate image
evidence to identify typical cases, edge cases, and negative examples.

5 Conclusion

In this paper, we introduce Roboflow100-VL, a large-scale benchmark to evaluate state-of-the-art
VLMs on concepts not typically found in internet-scale pre-training. Roboflow100-VL is curated
to evaluate detection performance on out-of-distribution tasks (e.g. material property estimation,
defect detection, and contextual action recognition) and imaging modalities (e.g. X-rays, thermal
spectrum data, and aerial imagery) using a few visual examples and rich textual descriptions. We find
that state-of-the-art models struggle on this challenging benchmark, demonstrating the limitations of
existing methods, and highlighting opportunities for future work.
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A Implementation Details

Detic. We use Detic [59] with a SWIN-L backbone for all zero-shot experiments. Additionally, we
use the model checkpoint trained on LVIS, COCO and ImageNet-21K. We use class names provided
as text prompts for Detic’s CLIP classifier.

GroundingDINO. We use GroundingDINO [26] with pretrained weights from mmdetection MM-
GroundingDINO-L*. We prompt the model with all the class names combined into a single prompt.

MQ-GLIP. MQ-Det [51] proposes a learnable module that enables multi-modal prompting. We
choose GLIP with a SWIN-L backbone as the underlying detection model for our experiments. We
use the model checkpoint trained on Objects365, FourODs, GoldG, Cap24M. Laslty,we use class
names as the text prompts and few-shot visual examples as visual prompts.

OWL-ViT2. We use OWL-ViT2 [32] as implemented in the Roboflow inference package [39]. We
prompt the model with all the class names combined into a single prompt.

Qwen-2.5VL. We conduct all experiments using Qwen2.5-VL’s 72B model via API. We prompt the
model based on guidelines from Qwen’s official documentation:

"Outline the position of each of the following objects: (list of categories), and output all the coordi-
nates in JSON format."

We also evaluated Qwen with dataset-specific annotator instructions for improved detection perfor-
mance. We modified the above prompt to include:

"Use the annotator instructions for the dataset that this image belongs to, to aid better detection:
(dataset’s annotator instructions) Outline the position of each of the following objects: (list of
categories), and output all the coordinates in JSON format."

We implemented a robust parser to handle minor JSON formatting errors while preserving correct
predictions. To speed up inference, we limited Qwen2.5-VL to only generate a maximum of 6144
tokens.

Gemini Flash 2.0. We conducted all experiments using the Gemini Flash 2.0 API. We prompt the
model based on guidelines from Gemini’s official documentation:

"Return bounding boxes as a JSON array with labels. Never return masks or code fencing. Detect all
instances of all objects requested by prompt."
"Detect the 2d bounding boxes of the following objects: (list of categories)"

Similar to Qwen2.5-VL, we prompted the model with annotator instructions and few-shot visual
examples (10-examples per class). We use the following system prompt for all three modes.

"Return bounding boxes as a JSON array with labels. Never return masks or code fencing. Use the
attached (dataset name) dataset annotator instructions and the few-shot examples as a reference for
better predictions."

We structured all prompts to place annotator instructions and few-shot examples first, while keeping
the original simple class-based detection prompt at the end to maintain a familiar format for the
model immediately before generation.

We limited all prediction generations to 6144 tokens to speed up inference. We implement a robust
parser to handle minor JSON formatting errors. In some cases with many few-shot image examples,
the API failed to return a valid response for requests of excessive size. We simply assign a score of 0
AP in such cases.
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YOLOv8 and YOLOv11. We train our YOLOv8 [16] and YOLOv11 [18] family of models using
the Ultralytics package with default parameters. We use a batch size of 16 and train for the default of
100 epochs.

STAC. We follow the training protocol defined by Sohn et. al. [44]. First, we train a teacher model
on the labeled subset of the data. Then, we use the teacher model to pseudo-label the remaining
unlabeled subset of the data. We keep all detections above a confidence C, where the confidence
tuned to maximize the F1 score of the teacher model on a validation set. Finally, we combine the
subset of data with true ground truth labels and the subset with pseudo-labels to form a training set
for a student model of the same architecture. We train this student model until convergence with
heavy augmentations. We use the same hyperparameters as our supervised YOLOv8 and YOLOv11
implementation.

B Sample Annotation Instructions

We present sample annotator instructions below. We use dataset metadata, class names and few-shot
visual examples and prompt GPT-4o [1] to generate annotator instructions. We then manually verify
that the instructions accurately describe the few-shot examples. These annotator instructions are from
recode-waste-czvmg-fsod-yxsw.

# Overview
- [Introduction](#introduction)
- [Object Classes](#object-classes)

- [Aggregate](#aggregate)
- [Cardboard](#cardboard)
- [Hard Plastic](#hard-plastic)
- [Metal](#metal)
- [Soft Plastic](#soft-plastic)
- [Timber](#timber)

# Introduction
This dataset is designed for waste classification within different material
classes. The goal is to accurately identify and annotate different types of
waste materials for sorting and recycling purposes. The classes represented
are: Aggregate, Cardboard, Hard Plastic, Metal, Soft Plastic, and Timber.

# Object Classes

## Aggregate
### Description
Aggregate refers to small, granular materials, often irregular in shape with
rough surfaces. They generally appear as pieces of stone or concrete.

### Instructions
Annotate all visible portions of aggregate items. Ensure to include entire
objects even if occluded by other materials, estimating boundaries if necessary.
Exclude dust or very fine particles that do not form distinct objects.

## Cardboard
### Description
Cardboard objects are typically flat and have a layered texture. They may appear
as boxes or sheets.

### Instructions
Annotate only distinguishable pieces of cardboard, focusing on their flat surfaces
and any visible layering. Do not annotate cardboard that is part of another object
or soiled beyond recognition.

## Hard Plastic
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### Description
Hard plastics are rigid and maintain their shape. They can be cylindrical, tubular,
or robust objects often found in industrial contexts.

### Instructions
Annotate the entire visible area of hard plastic objects, ensuring to capture their
solid structure. Avoid labeling small, indistinct pieces or any plastic that appears
flexible.

## Metal
### Description
Metal objects are robust, often shiny or reflective. They can appear as rods, sheets,
or other distinct shapes.

### Instructions
Label all distinct metal parts, taking care to capture their complete form. Avoid
labeling rust marks or indistinct metallic fragments lacking shape.

## Soft Plastic
### Description
Soft plastics are flexible and often transparent or translucent. They may appear in
the form of bags or wrappers.

### Instructions
Focus on full pieces of soft plastic material, ensuring to include areas with visible
creases or folds indicating flexibility. Do not label pieces smaller than a
recognizable package or those mixed with other materials.

## Timber
### Description
Timber objects are wooden, either rough or smooth, often elongated or rectangular.

### Instructions
Annotate the entire visible portion of timber, focusing on the grain or wood texture.
Do not label splinters or fragments that do not exhibit a clear wooden structure.

C Roboflow100-VL Datasets

We present a table with links to all datasets within Roboflow100-VL (fully-supervised and FSOD
datasets) below.
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Flora & Fauna Link
aquarium-combined FSOD, Fully Supervised
bees FSOD, Fully Supervised
deepfruits FSOD, Fully Supervised
exploratorium-daphnia FSOD, Fully Supervised
grapes-5 FSOD, Fully Supervised
grass-weeds FSOD, Fully Supervised
gwhd2021 FSOD, Fully Supervised
into-the-vale FSOD, Fully Supervised
jellyfish FSOD, Fully Supervised
marine-sharks FSOD, Fully Supervised
orgharvest FSOD, Fully Supervised
peixos-fish FSOD, Fully Supervised
penguin-finder-seg FSOD, Fully Supervised
pig-detection FSOD, Fully Supervised
roboflow-trained-dataset FSOD, Fully Supervised
sea-cucumbers-new-tiles FSOD, Fully Supervised
thermal-cheetah FSOD, Fully Supervised
tomatoes-2 FSOD, Fully Supervised
trail-camera FSOD, Fully Supervised
underwater-objects FSOD, Fully Supervised
varroa-mites-detection–test-set FSOD, Fully Supervised
wb-prova FSOD, Fully Supervised
weeds4 FSOD, Fully Supervised

Industrial Link
-grccs FSOD, Fully Supervised
13-lkc01 FSOD, Fully Supervised
2024-frc FSOD, Fully Supervised
aircraft-turnaround-dataset FSOD, Fully Supervised
asphaltdistressdetection FSOD, Fully Supervised
cable-damage FSOD, Fully Supervised
conveyor-t-shirts FSOD, Fully Supervised
dataconvert FSOD, Fully Supervised
deeppcb FSOD, Fully Supervised
defect-detection FSOD, Fully Supervised
fruitjes FSOD, Fully Supervised
infraredimageofpowerequipment FSOD, Fully Supervised
ism-band-packet-detection FSOD, Fully Supervised
l10ul502 FSOD, Fully Supervised
needle-base-tip-min-max FSOD, Fully Supervised
recode-waste FSOD, Fully Supervised
screwdetectclassification FSOD, Fully Supervised
smd-components FSOD, Fully Supervised
truck-movement FSOD, Fully Supervised
tube FSOD, Fully Supervised
water-meter FSOD, Fully Supervised
wheel-defect-detection FSOD, Fully Supervised
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https://universe.roboflow.com/rf-100-vl-fsod/13-lkc01-axmll-fsod-qtoq/2
https://universe.roboflow.com/rf-100-vl/13-lkc01-axmll-qtoq/1
https://universe.roboflow.com/rf-100-vl-fsod/2024-frc-aanyl-eqitq-7bqgi-fsod-hcvu/3
https://universe.roboflow.com/rf-100-vl/2024-frc-aanyl-eqitq-7bqgi-hcvu/2
https://universe.roboflow.com/rf-100-vl-fsod/aircraft-turnaround-dataset-5dnjf-orrm3-fsod-hffk/4
https://universe.roboflow.com/rf-100-vl/aircraft-turnaround-dataset-5dnjf-orrm3-hffk/2
https://universe.roboflow.com/rf-100-vl-fsod/asphaltdistressdetection-taf76-fsod-jcxx/2
https://universe.roboflow.com/rf-100-vl/asphaltdistressdetection-taf76-jcxx/1
https://universe.roboflow.com/rf-100-vl-fsod/cable-damage-z5nlo-9eslb-fsod-itoh/2
https://universe.roboflow.com/rf-100-vl/cable-damage-z5nlo-9eslb-itoh/1
https://universe.roboflow.com/rf-100-vl-fsod/conveyor-t-shirts-htpwe-koqei-gs0tv-fsod-qymy/3
https://universe.roboflow.com/rf-100-vl/conveyor-t-shirts-htpwe-koqei-gs0tv-qymy/2
https://universe.roboflow.com/rf-100-vl-fsod/dataconvert-9e6zr-lstqv-fsod-hiro/3
https://universe.roboflow.com/rf-100-vl/dataconvert-9e6zr-lstqv-hiro/2
https://universe.roboflow.com/rf-100-vl-fsod/deeppcb-4dhir-cudbt-fsod-zlst/3
https://universe.roboflow.com/rf-100-vl/deeppcb-4dhir-cudbt-zlst/2
https://universe.roboflow.com/rf-100-vl-fsod/defect-detection-yjplx-fxobh-fsod-amdi-hmafe/2
https://universe.roboflow.com/rf-100-vl/defect-detection-yjplx-fxobh-amdi-0660v/1
https://universe.roboflow.com/rf-100-vl-fsod/fruitjes-r9tou-fjfb8-fsod-gcke/3
https://universe.roboflow.com/rf-100-vl/fruitjes-r9tou-fjfb8-gcke/2
https://universe.roboflow.com/rf-100-vl-fsod/infraredimageofpowerequipment-kt4us-fsod-zqnd/4
https://universe.roboflow.com/rf-100-vl/infraredimageofpowerequipment-kt4us-zqnd/2
https://universe.roboflow.com/rf-100-vl-fsod/ism-band-packet-detection-e7s7w-fsod-mpkt/2
https://universe.roboflow.com/rf-100-vl/ism-band-packet-detection-e7s7w-mpkt/1
https://universe.roboflow.com/rf-100-vl-fsod/l10ul502-6ann9-fsod-yumi/5
https://universe.roboflow.com/rf-100-vl/l10ul502-6ann9-yumi/3
https://universe.roboflow.com/rf-100-vl-fsod/needle-base-tip-min-max-u87vi-wzsrt-fsod-kjyu/5
https://universe.roboflow.com/rf-100-vl/needle-base-tip-min-max-u87vi-wzsrt-kjyu/2
https://universe.roboflow.com/rf-100-vl-fsod/recode-waste-czvmg-fsod-yxsw-tpakw/2
https://universe.roboflow.com/rf-100-vl/recode-waste-czvmg-yxsw-fj9b9/1
https://universe.roboflow.com/rf-100-vl-fsod/screwdetectclassification-xrrbi-hkwlh-fsod-lybq/2
https://universe.roboflow.com/rf-100-vl/screwdetectclassification-xrrbi-hkwlh-lybq/1
https://universe.roboflow.com/rf-100-vl-fsod/smd-components-dnljh-poxfb-trqdw-7n9xb-fsod-ryth/5
https://universe.roboflow.com/rf-100-vl/smd-components-dnljh-poxfb-trqdw-7n9xb-ryth/2
https://universe.roboflow.com/rf-100-vl-fsod/truck-movement-qv1up-elxpj-fsod-ytsp/7
https://universe.roboflow.com/rf-100-vl/truck-movement-qv1up-elxpj-ytsp/4
https://universe.roboflow.com/rf-100-vl-fsod/tube-4rv8o-tyakk-ds4px-fsod-vtal/2
https://universe.roboflow.com/rf-100-vl/tube-4rv8o-tyakk-ds4px-vtal/1
https://universe.roboflow.com/rf-100-vl-fsod/water-meter-jbktv-7vz5k-fsod-ftoz-luwym/2
https://universe.roboflow.com/rf-100-vl/water-meter-jbktv-7vz5k-ftoz-z2ysc/1
https://universe.roboflow.com/rf-100-vl-fsod/wheel-defect-detection-e53jb-38chk-fsod-ytwg/2
https://universe.roboflow.com/rf-100-vl/wheel-defect-detection-e53jb-38chk-ytwg/1


Document Link
activity-diagrams FSOD, Fully Supervised
all-elements FSOD, Fully Supervised
circuit-voltages FSOD, Fully Supervised
invoice-processing FSOD, Fully Supervised
label-printing-defect-version-2 FSOD, Fully Supervised
macro-segmentation FSOD, Fully Supervised
paper-parts FSOD, Fully Supervised
signatures FSOD, Fully Supervised
speech-bubbles-detection FSOD, Fully Supervised
wine-labels FSOD, Fully Supervised

Medical Link
canalstenosis FSOD, Fully Supervised
crystal-clean-brain-tumors-mri-dataset FSOD, Fully Supervised
dentalai FSOD, Fully Supervised
inbreast FSOD, Fully Supervised
liver-disease FSOD, Fully Supervised
nih-xray FSOD, Fully Supervised
spinefrxnormalvindr FSOD, Fully Supervised
stomata-cells FSOD, Fully Supervised
train FSOD, Fully Supervised
ufba-425 FSOD, Fully Supervised
urine-analysis1 FSOD, Fully Supervised
x-ray-id FSOD, Fully Supervised
xray FSOD, Fully Supervised

Aerial Link
aerial-airport FSOD, Fully Supervised
aerial-cows FSOD, Fully Supervised
aerial-sheep FSOD, Fully Supervised
apoce-aerial-photographs-for-object-
detection-of-construction-equipment FSOD, Fully Supervised
electric-pylon-detection-in-rsi FSOD, Fully Supervised
floating-waste FSOD, Fully Supervised
human-detection-in-floods FSOD, Fully Supervised
sssod FSOD, Fully Supervised
uavdet-small FSOD, Fully Supervised
wildfire-smoke FSOD, Fully Supervised
zebrasatasturias FSOD, Fully Supervised

Sports Link
actions FSOD, Fully Supervised
aerial-pool FSOD, Fully Supervised
ball FSOD, Fully Supervised
bibdetection FSOD, Fully Supervised
football-player-detection FSOD, Fully Supervised
lacrosse-object-detection FSOD, Fully Supervised

17

https://universe.roboflow.com/rf-100-vl-fsod/activity-diagrams-qdobr-dtraz-lhxdc-fsod-cbow/5
https://universe.roboflow.com/rf-100-vl/activity-diagrams-qdobr-dtraz-lhxdc-cbow/2
https://universe.roboflow.com/rf-100-vl-fsod/all-elements-fsod-mebv-6ioka/2
https://universe.roboflow.com/rf-100-vl/all-elements-mebv-mmhjp/1
https://universe.roboflow.com/rf-100-vl-fsod/circuit-voltages-ysajo-fsod-tbpd/2
https://universe.roboflow.com/rf-100-vl/circuit-voltages-ysajo-tbpd/1
https://universe.roboflow.com/rf-100-vl-fsod/invoice-processing-nl2cz-d87if-be5rs-fsod-wkgh/2
https://universe.roboflow.com/rf-100-vl/invoice-processing-nl2cz-d87if-be5rs-wkgh/1
https://universe.roboflow.com/rf-100-vl-fsod/label-printing-defect-version-2-xhwap-fsod-vrcc/4
https://universe.roboflow.com/rf-100-vl/label-printing-defect-version-2-xhwap-vrcc/2
https://universe.roboflow.com/rf-100-vl-fsod/macro-segmentation-kaer8-yajkb-fsod-blok/4
https://universe.roboflow.com/rf-100-vl/macro-segmentation-kaer8-yajkb-blok/2
https://universe.roboflow.com/rf-100-vl-fsod/paper-parts-fsod-rmrg-3lbxv/2
https://universe.roboflow.com/rf-100-vl/paper-parts-rmrg-6ave2/1
https://universe.roboflow.com/rf-100-vl-fsod/signatures-xc8up-ytnch-qzw1d-fsod-pmbl/2
https://universe.roboflow.com/rf-100-vl/signatures-xc8up-ytnch-qzw1d-pmbl/1
https://universe.roboflow.com/rf-100-vl-fsod/speech-bubbles-detection-r22zt-ou0u6-fsod-jols/2
https://universe.roboflow.com/rf-100-vl/speech-bubbles-detection-r22zt-ou0u6-jols/1
https://universe.roboflow.com/rf-100-vl-fsod/wine-labels-3pmp5-lrsge-fsod-zbuo/2
https://universe.roboflow.com/rf-100-vl/wine-labels-3pmp5-lrsge-zbuo/1
https://universe.roboflow.com/rf-100-vl-fsod/canalstenosis-azjxm-fsod-cpkp/2
https://universe.roboflow.com/rf-100-vl/canalstenosis-azjxm-cpkp/1
https://universe.roboflow.com/rf-100-vl-fsod/crystal-clean-brain-tumors-mri-dataset-hzb2f-fsod-plsq/3
https://universe.roboflow.com/rf-100-vl/crystal-clean-brain-tumors-mri-dataset-hzb2f-plsq/2
https://universe.roboflow.com/rf-100-vl-fsod/dentalai-i4clz-fsod-fsuo-zuruj/2
https://universe.roboflow.com/rf-100-vl/dentalai-i4clz-fsuo-ung2d/1
https://universe.roboflow.com/rf-100-vl-fsod/inbreast-zzlbj-e5zj8-fsod-bzvi/4
https://universe.roboflow.com/rf-100-vl/inbreast-zzlbj-e5zj8-bzvi/2
https://universe.roboflow.com/rf-100-vl-fsod/liver-disease-jyvvu-fsod-fash/3
https://universe.roboflow.com/rf-100-vl/liver-disease-jyvvu-fash/2
https://universe.roboflow.com/rf-100-vl-fsod/nih-xray-itazg-fsod-xeoi/2
https://universe.roboflow.com/rf-100-vl/nih-xray-itazg-xeoi/1
https://universe.roboflow.com/rf-100-vl-fsod/spinefrxnormalvindr-lt1cn-fsod-ryhy/4
https://universe.roboflow.com/rf-100-vl/spinefrxnormalvindr-lt1cn-ryhy/1
https://universe.roboflow.com/rf-100-vl-fsod/stomata-cells-upfae-fsod-ngum/2
https://universe.roboflow.com/rf-100-vl/stomata-cells-upfae-ngum/1
https://universe.roboflow.com/rf-100-vl-fsod/train-i4unu-qkluh-fsod-mdec/4
https://universe.roboflow.com/rf-100-vl/train-i4unu-qkluh-mdec/2
https://universe.roboflow.com/rf-100-vl-fsod/ufba-425-asgxh-fsod-djrs/2
https://universe.roboflow.com/rf-100-vl/ufba-425-asgxh-djrs/1
https://universe.roboflow.com/rf-100-vl-fsod/urine-analysis1-2lol7-fsod-onpk/2
https://universe.roboflow.com/rf-100-vl/urine-analysis1-2lol7-onpk/1
https://universe.roboflow.com/rf-100-vl-fsod/x-ray-id-zfisb-fsod-dyjv-olpha/2
https://universe.roboflow.com/rf-100-vl/x-ray-id-zfisb-dyjv-vv4be/1
https://universe.roboflow.com/rf-100-vl-fsod/xray-2vqog-u6ggy-fsod-gqwl/2
https://universe.roboflow.com/rf-100-vl/xray-2vqog-u6ggy-gqwl/1
https://universe.roboflow.com/rf-100-vl-fsod/aerial-airport-7ap9o-fsod-ddgc-4qt0q/2
https://universe.roboflow.com/rf-100-vl/aerial-airport-7ap9o-ddgc-ftba6/1
https://universe.roboflow.com/rf-100-vl-fsod/aerial-cows-kt2wd-3jxcj-fsod-uvfx/2
https://universe.roboflow.com/rf-100-vl/aerial-cows-kt2wd-3jxcj-uvfx/1
https://universe.roboflow.com/rf-100-vl-fsod/aerial-sheep-y13yz-hs4wl-fsod-wzyo/2
https://universe.roboflow.com/rf-100-vl/aerial-sheep-y13yz-hs4wl-wzyo/1
https://universe.roboflow.com/rf-100-vl-fsod/apoce-aerial-photographs-for-object-detection-of-construction-equipment-6raie-ur6qc-fsod-absn/2
https://universe.roboflow.com/rf-100-vl/apoce-aerial-photographs-for-object-detection-of-construction-equipment-6raie-ur6qc-absn/1
https://universe.roboflow.com/rf-100-vl-fsod/electric-pylon-detection-in-rsi-q6qra-fsod-psut/3
https://universe.roboflow.com/rf-100-vl/electric-pylon-detection-in-rsi-q6qra-psut/2
https://universe.roboflow.com/rf-100-vl-fsod/floating-waste-8deje-fsod-lrbq/4
https://universe.roboflow.com/rf-100-vl/floating-waste-8deje-lrbq/2
https://universe.roboflow.com/rf-100-vl-fsod/human-detection-in-floods-a6aun-5xvpd-2hvjd-fsod-sbyy/3
https://universe.roboflow.com/rf-100-vl/human-detection-in-floods-a6aun-5xvpd-2hvjd-sbyy/2
https://universe.roboflow.com/rf-100-vl-fsod/sssod-uaagn-fsod-txmx/3
https://universe.roboflow.com/rf-100-vl/sssod-uaagn-txmx/2
https://universe.roboflow.com/rf-100-vl-fsod/uavdet-small-txtvh-fsod-ysli/2
https://universe.roboflow.com/rf-100-vl/uavdet-small-txtvh-ysli/1
https://universe.roboflow.com/rf-100-vl-fsod/wildfire-smoke-fsod-myxt-tided/2
https://universe.roboflow.com/rf-100-vl/wildfire-smoke-myxt-becdf/1
https://universe.roboflow.com/rf-100-vl-fsod/zebrasatasturias-nzsnv-fsod-cqvl/2
https://universe.roboflow.com/rf-100-vl/zebrasatasturias-nzsnv-cqvl/1
https://universe.roboflow.com/rf-100-vl-fsod/actions-zzid2-zb1hq-fsod-amih-ecd3n/2
https://universe.roboflow.com/rf-100-vl/actions-zzid2-zb1hq-amih-rsbpp/1
https://universe.roboflow.com/rf-100-vl-fsod/aerial-pool-vlhhw-rzhef-fsod-qlaz/4
https://universe.roboflow.com/rf-100-vl/aerial-pool-vlhhw-rzhef-qlaz/2
https://universe.roboflow.com/rf-100-vl-fsod/ball-qgqhv-2mtfk-ch2i9-fsod-ejgb/3
https://universe.roboflow.com/rf-100-vl/ball-qgqhv-2mtfk-ch2i9-ejgb/2
https://universe.roboflow.com/rf-100-vl-fsod/bibdetection-swtfw-z85dg-fsod-mzqx/2
https://universe.roboflow.com/rf-100-vl/bibdetection-swtfw-z85dg-mzqx/1
https://universe.roboflow.com/rf-100-vl-fsod/football-player-detection-kucab-fbcl7-uj1oi-fsod-gxtg/3
https://universe.roboflow.com/rf-100-vl/football-player-detection-kucab-fbcl7-uj1oi-gxtg/2
https://universe.roboflow.com/rf-100-vl-fsod/lacrosse-object-detection-fsod-uxkt-keltt/2
https://universe.roboflow.com/rf-100-vl/lacrosse-object-detection-uxkt-vaybh/1


Other Link
buoy-onboarding FSOD, Fully Supervised
car-logo-detection FSOD, Fully Supervised
clashroyalechardetector FSOD, Fully Supervised
cod-mw-warzone FSOD, Fully Supervised
countingpills FSOD, Fully Supervised
everdaynew FSOD, Fully Supervised
flir-camera-objects FSOD, Fully Supervised
halo-infinite-angel-videogame FSOD, Fully Supervised
mahjong FSOD, Fully Supervised
new-defects-in-wood FSOD, Fully Supervised
orionproducts FSOD, Fully Supervised
pill FSOD, Fully Supervised
soda-bottles FSOD, Fully Supervised
taco-trash-annotations-in-context FSOD, Fully Supervised
the-dreidel-project FSOD, Fully Supervised
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https://universe.roboflow.com/rf-100-vl-fsod/buoy-onboarding-uys2h-lbtek-fsod-ttiu/2
https://universe.roboflow.com/rf-100-vl/buoy-onboarding-uys2h-lbtek-ttiu/1
https://universe.roboflow.com/rf-100-vl-fsod/car-logo-detection-cxyfl-snnqi-fsod-wfqa/2
https://universe.roboflow.com/rf-100-vl/car-logo-detection-cxyfl-snnqi-wfqa/1
https://universe.roboflow.com/rf-100-vl-fsod/clashroyalechardetector-xus94-giyri-fsod-voeq/4
https://universe.roboflow.com/rf-100-vl/clashroyalechardetector-xus94-giyri-voeq/4
https://universe.roboflow.com/rf-100-vl-fsod/cod-mw-warzone-pkski-akqif-fsod-ojfh/2
https://universe.roboflow.com/rf-100-vl/cod-mw-warzone-pkski-akqif-ojfh/1
https://universe.roboflow.com/rf-100-vl-fsod/countingpills-exf0r-fsod-gfkt/3
https://universe.roboflow.com/rf-100-vl/countingpills-exf0r-gfkt/2
https://universe.roboflow.com/rf-100-vl-fsod/everdaynew-6ej0k-lyqxk-fsod-zzbi/3
https://universe.roboflow.com/rf-100-vl/everdaynew-6ej0k-lyqxk-zzbi/2
https://universe.roboflow.com/rf-100-vl-fsod/flir-camera-objects-fsod-tdqp-xpjid/2
https://universe.roboflow.com/rf-100-vl/flir-camera-objects-tdqp-z83s3/1
https://universe.roboflow.com/rf-100-vl-fsod/halo-infinite-angel-videogame-cqrgf-fsod-fbcm/2
https://universe.roboflow.com/rf-100-vl/halo-infinite-angel-videogame-cqrgf-fbcm/1
https://universe.roboflow.com/rf-100-vl-fsod/mahjong-vtacs-mexax-m4vyu-fsod-sjtd/4
https://universe.roboflow.com/rf-100-vl/mahjong-vtacs-mexax-m4vyu-sjtd/2
https://universe.roboflow.com/rf-100-vl-fsod/new-defects-in-wood-uewd1-fsod-tffp-x9ygx/2
https://universe.roboflow.com/rf-100-vl/new-defects-in-wood-uewd1-tffp-dpoyu/1
https://universe.roboflow.com/rf-100-vl-fsod/orionproducts-vtl2z-fsod-puhv-ce2it/2
https://universe.roboflow.com/rf-100-vl/orionproducts-vtl2z-puhv-bhzb1/1
https://universe.roboflow.com/rf-100-vl-fsod/pill-j8vgy-o5udx-7xdez-fsod-ehbb/5
https://universe.roboflow.com/rf-100-vl/pill-j8vgy-o5udx-7xdez-ehbb/2
https://universe.roboflow.com/rf-100-vl-fsod/soda-bottles-fsod-haga-1d5c6/2
https://universe.roboflow.com/rf-100-vl/soda-bottles-haga-guxba/1
https://universe.roboflow.com/rf-100-vl-fsod/taco-trash-annotations-in-context-dtyly-fsod-awiq/6
https://universe.roboflow.com/rf-100-vl/taco-trash-annotations-in-context-dtyly-awiq/2
https://universe.roboflow.com/rf-100-vl-fsod/the-dreidel-project-anzyr-fsod-zejm-fwv5t/2
https://universe.roboflow.com/rf-100-vl/the-dreidel-project-anzyr-zejm-pekg0/1
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